3 - Seminar Meta Learning (SemMeL) - Benjamin Geissler - Meta-learning symmetries by reparameterization [ID:25222]
clip player preview

Dieser Clip ist ausschließlich für angemeldete Benutzer zugänglich.

Teil einer Videoserie :

Zugänglich über

Nur für Portal

Gesperrt clip

Dauer

00:39:57 Min

Aufnahmedatum

2020-11-30

Hochgeladen am

2020-11-30 10:08:22

Sprache

en-US

Today we have a presentation by Benjamin Geissler on "Meta-learning symmetries by reparameterization".

Abstract: Many successful deep learning architectures are equivariant to certain transformations in order to conserve parameters and improve generalization: most famously, convolution layers are equivariant to shifts of the input. This approach only works when practitioners know the symmetries of the task and can manually construct an architecture with the corresponding equivariances. Our goal is an approach for learning equivariances from data, without needing to design custom task-specific architectures. We present a method for learning and encoding equivariances into networks by learning corresponding parameter sharing patterns from data. Our method can provably represent equivariance-inducing parameter sharing for any finite group of symmetry transformations. Our experiments suggest that it can automatically learn to encode equivariances to common transformations used in image processing tasks. We provide our experiment code at this https URL.

https://arxiv.org/abs/2007.02933

Tags

meta learning